The Effect of Atomic-Scale Roughness on the Adhesion of Nanoscale Asperities: A Combined Simulation and Experimental Investigation

نویسندگان

  • Tevis D. B. Jacobs
  • Kathleen E. Ryan
  • Pamela L. Keating
  • David S. Grierson
  • Joel A. Lefever
  • Kevin T. Turner
  • Judith A. Harrison
  • Robert W. Carpick
چکیده

The effect of atomic-scale roughness on adhesion between carbon-based materials is examined by both simulations and experimental techniques. Nanoscale asperities composed of either diamond-like carbon or ultrananocrystalline diamond are brought into contact and then separated from diamond surfaces using both molecular dynamics simulations and in situ transmission electron microscope (TEM)-based nanoindentation. Both techniques allow for characterization of the roughness of the sharp nanoasperities immediately before and after contact down to the subnanometer scale. The root mean square roughness for the simulated tips spanned 0.03 nm (atomic corrugation) to 0.12 nm; for the experimental tips, the range was 0.18–1.58 nm. Over the tested range of roughness, the measured work of adhesion was found to decrease by more than an order of magnitude as the roughness increased. The dependence of adhesion upon roughness was accurately described using a simple analytical model. This combination of simulation and experimental methodologies allows for an exploration of an unprecedented range of tip sizes and length scales for roughness, while also verifying consistency of the results between the techniques. Collectively, these results demonstrate the high sensitivity of adhesion to interfacial roughness down to the atomic limit. Furthermore, they indicate that care must be taken when attempting to extract work of adhesion values from experimental measurements of adhesion forces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adhesion of nanoscale asperities with power-law profiles

The behavior of single-asperity microand nanoscale contacts in which adhesion is present is important for the performance of many small-scale mechanical systems and processes, such as atomic force microscopy (AFM). When analyzing such problems, the bodies in contact are often assumed to have paraboloidal shapes, thus allowing the application of the familiar Johnson–Kendall–Roberts (JKR), Derjag...

متن کامل

MD-Simulation of Duty Cycle and TaN Interlayer Effects on the Surface Properties of Ta Coatings Deposited by Pulsed-DC Plasma Assisted Chemical Vapor Deposition

In this work, molecular dynamics (MD) simulations were employed to investigate the effects of duty cycle changes and utilization of tantalum nitride interlayer on the surface roughness and adhesion of Ta coating deposited by pulsed-DC plasma assisted chemical vapor deposition. To examine the simulation results, some selected deposition conditions were experimentally implemented and characterize...

متن کامل

Capillary forces between surfaces with nanoscale roughness.

The flow and adhesion behavior of fine powders (approx. less than 10 microm) is significantly affected by the magnitude of attractive interparticle forces. Hence, the relative humidity and magnitude of capillary forces are critical parameters in the processing of these materials. In this investigation, approximate theoretical formulae are developed to predict the magnitude and onset of capillar...

متن کامل

The influence of nanoscale roughness and substrate chemistry on the frictional properties of single and few layer graphene.

Nanoscale carbon lubricants such as graphene, have garnered increased interest as protective surface coatings for devices, but its tribological properties have been shown to depend on its interactions with the underlying substrate surface and its degree of surface conformity. This conformity is especially of interest as real interfaces exhibit roughness on the order of ∼10 nm that can dramatica...

متن کامل

Experimental Investigation of the Effect of Deionized Water on Surface Roughness of Near Dry Electro Discharge Machining of AISI D2 Steel

The electro discharge machining (EDM), one of the methods used in the machining industry and a non-traditional manufacturing method, the electro erosion process does not depend on the hardness of material and offers a way to process materials of very complex geometry with very fine and high precision by using cheap electrode materials, which make it a preferred method. In this study, effect of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013